Under water hearing of human and aquatic vertebrates

Nico A.M. Schellart

Published by
Foundation of Dive Research

1 Associate Professor in Medical Physics, Affiliation: Dept. of Biomedical Engineering and Physics, Academic Medical Center, Amsterdam, the Netherlands.
2 Amsterdam, the Netherlands (www.duikresearch.org)

© November 2012, Amsterdam
All rights reserved. Material of this syllabus may not be reproduced in any form without permission
Preface

The sense of hearing is pre-eminently the sense for communication. Under water (UW), aquatic vertebrates explicitly make use of it. For human, the UW environment is biologically seen a hostile environment. This is a reason the more to gather as much as possible sensory information, both at short and long distance, allowing coping and anticipating adequately on this surrounding. Unfortunately, for human with respect to hearing, this is not very successful. As a result of the large difference between the propagation of sound in air and in water, only already for this reason human UW hearing will differ considerably with regard to hearing in air. All together, human is poorly equipped for UW hearing. And speaking UW is even entirely impossible.

In order to get insight in UW-audiology of human and animals it is necessary also to know the basics of UW-acoustics what is treated in Chapter I. Self-evidently, also the theory of acoustics in air will be discussed. In Chapter II, hearing of fish and aquatic mammals is treated. The sea mammals enjoy a particular popularity under sport divers and some knowledge of their hearing is therefore certainly in place. In Chapter III hearing of fish is discussed more closely. Warm-blooded animals have two senses, the auditory and equilibrium system of which the sensory receptors are hair cells. Much attention is given to hearing of fish because for the sport divers fishes are the aquatic animals of UW live which give the greatest pleasure of observing like diving practice proves. Fish and amphibians have a third system which utilizes hair cells, the lateral line system. With this system the flow of water along the body and also the disturbance of flow by nearby objects can be detected. This unique system does not have its equivalent in terrestrial animals. The lateral line hair cells have been the first hair cells of vertebrates of which the mechano-electric transduction was elucidated at subcellular level. This system will comes up for discussion in Chapter IV.

For a good understanding of human UW hearing, treated in Chapter VI, it is necessary to know something of the physiology and physics of the human hearing organ under normal circumstances, i.e. in the air at sea level. For this reason this will be treated firstly in Chapter V. Finally, sound communication of fish and aquatic mammals will be treated in the last chapter (VII).

This syllabus is intended for physicians, especially in otorhinolaringology, and for people with interest in the subject who have a science training, e.g. medical biology or medical physics. Some diving experience of the reader is considered as an advantage.

The syllabus was written for an ENT coarse of the Scott Haldane Foundation, but it covers more than can be addressed during the oral presentations. However, the aim was to present a review which covers the subject rather well and is detailed enough to give insight.

The syllabus has 3 levels of difficulty.
1. Textboxes in the main text are statements which one can adopt without further explanation. They can be considered as “take home messages”. They are understandable for everyone with a higher education.
2. The main text, resumed in the boxes, is such that exhaustive explanation and argumentation with formulas are restricted up to a minimum.
3. On a large scale footnotes are applied. Mostly they give more detailed information and some treat mathematical equations. They can be skipped because they are not necessary for understanding of the main text. However, sometimes they respect definitions.

For the major part of his carrier, the author was involved in the research of the electrophysiology and psychophysics of the auditory and visual system of animals and human. This resulted in many scientific publications and chapters in textbooks. A major part of this syllabus is based on these papers. His special interest in the sensory systems of fish and the convergence of multi-sensory sensory information can be found again in chapters III and IV.

N. Schellart, November 2012.
Chapter IV THE MECHANORECEPTORY LATERAL LINE SYSTEM

Introduction
Structure and function of the lateral line organ
Frequency sensitivity
Lateral line abilities
Comparative aspects and relationships with habitat and behaviour
Anatomy of the lateral line pathway
Multimodal relationships with habitat and behaviour
Neurophysiology
Afferent LL nerve fibre responses
Central processing
Concluding remark

References

Chapter V PHYSIOLOGY AND PHYSICS OF THE HUMAN HEARING ORGAN

The outer ear
Pinna and source elevation
The ear canal (meatus)

The middle ear
Comparative aspects and a functional model of the mammalian outer and middle ear

The inner ear
Active cochlear mechanics
Otoacoustic emissions
Efferent control
Summary of cochlear mechanics

Bone conduction

References

Chapter VI UNDERWATER HEARING OF HOMO SAPIENS

Introduction
The outer ear
The pinnae
The ear canal (meatus)

The middle ear
The inner ear
Methods in UW audiology
The UW human audiogram
Hypotheses of the physiological principle of UW hearing
De tympanum-hypothesis
Bauer’s version of the tympanum-hypothesis
De bone conduction hypothesis
The dual pathway hypothesis
The middle ear hypothesis

Influence of depth
Influence of the neoprene hood and of a bubble in ear canal
This booklet can be ordered by

1. a money transfer of 15 Euro to:

- ING bank account 5856014 on the name of Stichting Duik Research in Aerdenhout, the Netherlands and marked: Reader UW Hearing
- for foreign accounts: IBAN code NL05INGB0005856014, BIC code (SWIFT code) of the ING Bank is INGBNL2A, the Netherlands.

2. sending an E-mail to

n.a.schellart@amc.uva.nl with your complete address, the name of the account holder and subject ‘Reader UW Hearing’.